The stereochemical course of the reaction catalyzed by soluble bovine lung guanylate cyclase.

نویسندگان

  • P D Senter
  • F Eckstein
  • A Mülsch
  • E Böhme
چکیده

The stereochemical course of the reaction catalyzed by the soluble form of bovine lung guanylate cyclase has been investigated using [alpha-18O]guanosine 5'-triphosphate (Rp diastereomer) and guanosine 5'-O-(1-thiotriphosphate) (Sp diastereomer) as substrates. The product from the 3-thiomorpholino-1',1'-dioxide sydnonimine-stimulated enzymatic cyclization of [alpha-18O] guanosine 5'-triphosphate was esterified with diazomethane. 31P NMR analysis of the triesters indicated that all of the 18O label was present in the axial position. Guanosine 5'-O-(1-thiotriphosphate) (Sp diastereomer) was cyclized under stimulated and basal enzyme activities and, in both cases, the Rp diastereomer of guanosine 3',5'-cyclic phosphorothioate was formed. This was determined by direct comparison with material synthesized chemically from guanosine 5'-phosphorothioate. The results from these experiments show that the reaction catalyzed by guanylate cyclase proceeds with inversion of configuration at phosphorus and this indicates that the reaction proceeds by way of a single direct displacement reaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereochemical course of the reaction catalyzed by guanylate cyclase from bovine retinal rod outer segments.

The stereochemical course of the reaction catalyzed by guanylate cyclase from bovine retinal rod outer segments was investigated using phosphorothioate analogs of GTP as chiral probes. (Sp)-Guanosine 5'-O-(1-thiotriphosphate) (Sp-GTP alpha S) is a substrate, whereas (Rp)-GTP alpha S is a competitive inhibitor (K1 = 0.1 mM), but not a substrate. (Sp)-GTP alpha S is converted into (Rp)-guanosine ...

متن کامل

Activation of soluble guanylate cyclase by NO-hemoproteins involves NO-heme exchange. Comparison of heme-containing and heme-deficient enzyme forms.

The mechanism of activation of soluble guanylate cyclase purified from bovine lung by high molecular weight, nitrosyl-hemoprotein complexes is reported. Heme-containing, heme-deficient, and heme-reconstituted forms of guanylate cyclase were studied. Nitric oxide (NO) and nitroso compounds activated heme-containing and heme-reconstituted enzymes (over 50-fold), with an accompanying shift in the ...

متن کامل

Activation of soluble guanylyl cyclase by the nitrovasodilator 3-morpholinosydnonimine involves formation of S-nitrosoglutathione.

Soluble guanylyl cyclase (sGC) is the major physiological target of sydnonimine-based vasodilators such as molsidomine. Decomposition of sydnonimines results in the stoichiometric formation of nitric oxide (NO) and superoxide (O2-), which rapidly react to form peroxynitrite. Inasmuch as sGC is activated by NO but not by peroxynitrite, we investigated the mechanisms underlying sGC activation by ...

متن کامل

Characterization of protein inhibitors of guanylate cyclase activation from rat heart and bovine lung.

Sodium azide activated soluble rat liver guanylate cyclase but not crude preparations from rat heart or bovine lung. Mixing supernatant fractions from liver preparations with those from heart or lung resulted in an inhibition of sodium azide activation. The inhibitory activity was nondialyzable, heat-labile, and resistant to trypsin treatment. Chromatography of heart or lung supernatant prepara...

متن کامل

The Effects of Nitroxyl (HNO) on Soluble Guanylate Cyclase Activity

It has been previously proposed that nitric oxide (NO) is the only biologically relevant nitrogen oxide capable of activating the enzyme soluble guanylate cyclase (sGC). However, recent reports implicate HNO as another possible activator of sGC. Herein, we examine the affect of HNO donors on the activity of purified bovine lung sGC and find that, indeed, HNO is capable of activating this enzyme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 258 11  شماره 

صفحات  -

تاریخ انتشار 1983